

next generation led

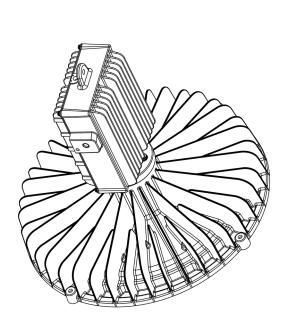
info@nextgenerationled.be www.nextgenerationled.be Tel + 32 53 71 09 42

HIGH BAY EFL

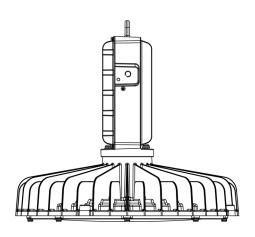
Properties

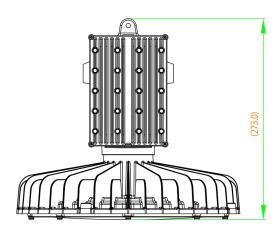
- Lifespan L70 %: > 50.000 hr
- Energy savings up to 65%
- Efficacy: 125~130 lm per watt
- Excellent cooling structure
- Anodized aluminum body and polycarbonate diffuser (3.0T)
- No UV radiation
- Ceiling bracket (pipe & chain)
- Warranty : 5 years

Specifications

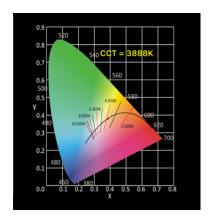

EFL	EFL070	EFL100	EFL130		
Power	70 W	100 W	130W		
Luminous flux	8750 lm 12500 lm		16900 lm		
Input voltage	AC 100 - 277 V / 50/60Hz				
Color rendering index	Ra >80				
Color temperature	3000 K - 4000 K - 5000 K - 5700 K				
Temperature in use	- 30°C ~ 60°C				
Beam Angle	80° and 120°				
Size (D x H en mm)	244 x 249	316 x 273	316 x 273		
Weight	3.7 kg	4.9 kg	4.9 kg		

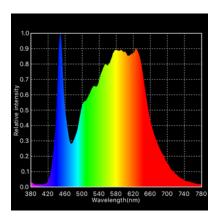
Application


Showroom, auditorium, warehouse, factory, ...



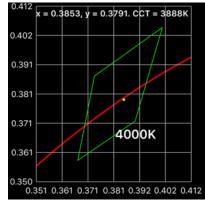
Specifications 100W model

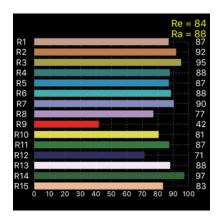




CIE 1931

The CIE color space, developed in 1931, is still used to define colors, and as a reference for other color spaces. The figure is a two-dimensional display of colors of the same intensity (brightness), which is based on observations of color measurements by people.




SPECTRUM

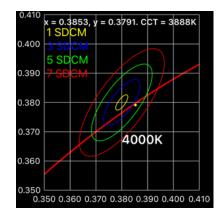
Isaac Newton used the Latin word spectrum to define the color series which arose when he dropped a bundle of sunlight through a glass prism. The color spectrum consists of the colors of the rainbow with the color sequence red-orange-yellow-green-blue-indigo-violet, which corresponds to bearish wave length (increasing frequency) of the light waves

C78 377

CRI HISTOGRAM

The color reproduction of a light source indicates whether the color of an object can be displayed true to nature. The graph shows whether we can accurately determine color, depending on the color rendering properties of the light source.

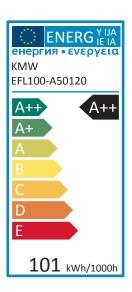
Ra = average of R1 to R8

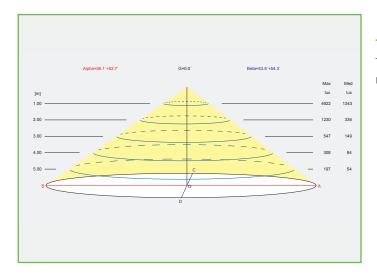

Re = average of R1 to R15

R9 = saturated red. Should be as high as possible.

SDCM

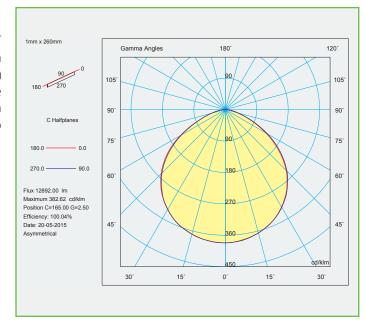
SDCM is an acronym which stands for Standard Deviation Colour Matching. SDCM has the same meaning as a "MacAdam ellipse". A 1-step MacAdam ellipse defines a zone in the CIE 1931 2 deg (xy) colour space within which the human eye cannot discern colour difference. Most LEDs are binned at the 4-7 step level, in other words you certainly can see colour differences in LEDs that are ostensibly the same colour.


<u>SDCM</u>	<u>CCT@ 3000K</u>	<u> </u>
1x	±30K	±0.0007
2x	±60K	±0.0010
4x	±100K	±0.0020
7-8x	±175K	±0.0060



ENERGYLABEL

Electrical appliances carry an energy label. This label prints the so-called energy efficiency score in classes. These classes range from 'very energy efficient' (A++) to 'very waste of energy' (E). A more expensive new device may eventually turn out to be cheaper if the energy score is good. IPEA is the new system for luminaire energy efficiency assessment.



BEAM

The Illuminance Cone Diagram indicates the maximum illuminance at different distances from the fixture.

POLAR DIAGRAM

The polar luminous intensity graph illustrates the distribution of luminous intensity, in candelas, for the transverse (solid line) and axial (dashed line) planes of the luminaire. The shown curve provides a visual guide to the type of distribution expected from the luminaire e.g. wide, narrow, direct, indirect... in addition to intensity.

HIGH BAY EFL

REFERENCE	WATT	LUMEN	COLOR	BUNDEL	WIFI
180-0300	70 W	8750 lm	3000 K	80 °	None
180-0301	70 W	8750 lm	4000 K	80 °	None
180-0302	70 W	8750 lm	5000 K	80 °	None
180-0303	70 W	8750 lm	5700 K	80 °	None
180-0304	70 W	8750 lm	3000 K	120 °	None
180-0305	70 W	8750 lm	4000 K	120 °	None
180-0306	70 W	8750 lm	5000 K	120 °	None
180-0307	70 W	8750 lm	5700 K	120 °	None
180-0308	100 W	12500 lm	3000 K	80 °	None
180-0309	100 W	12500 lm	4000 K	80 °	None
180-0310	100 W	12500 lm	5000 K	80 °	None
180-0311	100 W	12500 lm	5700 K	80 °	None
180-0312	100 W	12500 lm	3000 K	120°	None
180-0313	100 W	12500 lm	4000 K	120°	None
180-0314	100 W	12500 lm	5000 K	120°	None
180-0315	100 W	12500 lm	5700 K	120°	None
180-0316	130 W	16900 lm	4000 K	120 °	None
180-0317	130 W	16900 lm	5000 K	120°	None

